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Abstract
Tie bars axial force demands due to concrete dilation and prying action were investigated through numerical studies. In the 
first part of this study, the Karagozian and Case Concrete model, which proved to provide reasonable in-plane flexural cyclic 
inelastic wall response while accounting for concrete dilation effect, was used to investigate the variation of confinement 
inside the infill concrete, the distribution of passive confining pressures at the steel–concrete interface, and the resulting 
tie bar axial force demands. Finite element analyses involving C-PSW/CF having different tie spacings, wall depths, and 
wall thicknesses were performed. In the second part of this study, the influence of plate local buckling on tie bar axial force 
demand was investigated and explained by prying action. A separate finite element study was performed to investigate the 
significance of prying action and equations were developed from free-body diagrams. The results showed the significance 
of the passive confining pressures due to concrete dilation, and prying action due to local plate buckling, on imparting axial 
forces in tie bars. Neither of these behavior are currently considered as design parameters for tie bars. The numerical analyses 
and results presented here are intended to provide useful insights and direction for the design and instrumentation of future 
C-PSW/CF experiments by the broader research community.

Keywords Composite plate shear walls · Concrete-filled · Confinement · Confining pressure · Prying action · Tie bar

1 Introduction

Composite Plate Shear Wall–Concrete Filled (C-PSW/CF) 
consists of dual planar steel web plates having concrete infill, 
as defined in AISC-341 (AISC, 2016). The dual steel web 
plates are interconnected by tie bars. For building applica-
tions, these walls are used to provide in-plane flexural resist-
ance to severe wind and earthquake loads. One of the roles 
of tie bars is to provide stability of the unit during construc-
tion, another is to provide load transfer to develop composite 
action of the steel plates and the infill concrete under wall 
deformation. Tie bars also serve to locally redistribute load 

from the steel plates to the concrete infill following the steel 
plates local buckling (Polat & Bruneau, 2018). Tie bars can 
also serve other purposes in specific applications, such as 
in nuclear power plants when subjected to extreme thermal 
loads, but scope of the study here is limited to buildings 
having flexural walls.

While the above functions of tie bars are understood, 
there is no test data providing explicit tie bar axial force 
demands and response under inelastic in-plane flexural wall 
response, even though tie bars have failed in some past tests 
[e.g., Bhardwaj et al. (2019), Ramesh (2013)]. Existing 
design equations to size tie bars in C-PSW/CF are approxi-
mate and not based on models of the mechanisms that can 
lead to their failure in walls subjected to in-plane flexure. 
While these design equations are presumed to be adequate, 
further knowledge generated by additional experimental 
research will be needed to verify this. However, for this 
future research to be successful, guidance must be provided 
on possible expected causes of tie bar failures in such walls, 
so that specimens can be adequately instrumented to capture 
the behaviors leading to these failures. This paper presents 
findings and fundamental observations from numerical 

Online ISSN 2093-6311
Print ISSN 1598-2351

 * Erkan Polat 
 erkanpolat@munzur.edu.tr

1 Department of Civil Engineering, Munzur University, 
Tunceli, Turkey

2 Modjeski and Masters, Inc., 100 Sterling Parkway, Suite 302, 
Mechanicsburg, PA 17050, USA

3 Department of Civil, Structural and Environmental 
Engineering, University at Buffalo, State University of New 
York, 130 Ketter Hall, Buffalo, NY 14260, USA

http://orcid.org/0000-0002-2326-7387
http://crossmark.crossref.org/dialog/?doi=10.1007/s13296-021-00480-3&domain=pdf


902 International Journal of Steel Structures (2021) 21(3):901–921

1 3

analyses conducted to explore what may be some of these 
mechanisms that induce axial tie bar forces in C-PSW/CF.

The following sections summarize relevant past research 
and existing design provisions for tie bars in C-PSW/CF, 
describe the assumptions made in this analytical study, 
and present results from finite element analyses that have 
allowed to identify two mechanisms currently not consid-
ered in the design of these walls and that could impart axial 
force demands on tie bars, namely: (1) the effect of possible 
confinement pressures, and (2) the development of prying 
action during local buckling. Given that these two mecha-
nisms have not been reported in the prior literature, the ben-
efit of the numerical analyses and results presented here is to 
provide insights and direction for the design and instrumen-
tation of future experiments by the broader research commu-
nity. These future experiments will not only allow to verify 
and quantify the impact of the phenomena reported here as a 
basis for the development of closed-form equations to deter-
mine the axial forces to be used in the design of tie bars, but 
also to challenge the assumptions made in the current study.

It is important that the results presented here be under-
stood and appreciated in that perspective, and not interpreted 
as predictions of absolute accuracy. The development of a 
complete understanding of the non-linear inelastic behavior 
of all components of C-PSW/CF is a complex undertaking 
that will require multiple iterations and studies.

2  Literature Review

2.1  Tie Bars

Tie bar failures have sporadically been reported in a few 
past C-PSW/CF tests, but none have been documented to 
the extent necessary for rigorous analysis. Ramesh (2013) 
reported failure of multiple tie bars in the flange of a 
8115 mm (319.5 in) tall cantilever wall having a T-shape 
cross-section tested under cyclic loading. This flange had an 
infill concrete thickness of 219 mm (8.63 in), a steel plate 
thickness of 4.76 mm (3/16 in), and used 9.53 mm (3/8 in) 
diameter threaded rods as tie bars spaced at 114 mm (4.5 
in) in the vertical and horizontal directions. Unfortunately, 
the sequence of tie failure was not documented (personal 
communication, Prof. Michael E. Kreger, Dept. of Civil, 
Construction, & Environmental Engr., University of Ala-
bama, October 10, 2019), the tie bars were not instrumented, 
and their steel grade was not reported. In a separate study 
(Bhardwaj et al., 2019), a single tie bar failed in a wall 
subjected to combined in-plane and out-of-plane loading. 
The tie bar was instrumented in this case, but location of 
the strain gages along the tie bar was not provided, and the 
specimen failed in a complex biaxial and torsional mode; 
none of the analyses conducted for that wall reported the tie 

bar strains at failure (Bhardwaj et al., 2019; Terranova et al. 
2017, 2019).

The AISC 341-16 Seismic Provisions provide an equation 
to calculate the axial force demand in the tie bars of planar 
C-PSW/CF having cross-section with round boundary ele-
ments. This equation sums demands  T1 and  T2, where  T1 was 
derived by a design analogy assuming fictitious shears cor-
responding to locally buckled web plates developing plastic 
hinges on horizontal yield lines along the tie bars and at 
mid-vertical distance between tie-bars (Alzeni & Bruneau, 
2014), and  T2 was derived by calculating the force needed 
to prevent splitting of the concrete element on a plane par-
allel to the steel plate when compressive loading is solely 
applied to the concrete (Varma et al., 2014). Both  T1 and 
 T2 are recognized to be conservative but not representative 
of actual demand. New provisions for coupled C-PSW/CF 
(AISC 2022) provide a tie bar spacing requirement derived 
based on the flexibility and shear buckling of empty steel 
modules before concrete placement (Varma et al., 2019), 
as an indirect way to size tie bars, without calculating axial 
force demands and independent of tie bar steel grade.

Prior analytical work also focused on different related 
topics. For example, Zhang et al. (2014) used fiite element 
models to investigate the effect of shear studs on the devel-
opment of partial composite action in wall sections. Design 
recommendations have also been formulated by others 
for shear demands on tie bars to achieve composite action 
(Corus, 2003). However, these do not provide information 
on axial force demands on tie bars for C-PSW/CF subjected 
to in-plane bending.

3  Concrete Models

Some research projects have used finite element analysis for 
the simulation of the global force–displacement (or moment-
rotation) cyclic inelastic behavior of C-PSWF/CF with dif-
ferent aspect ratios (defined as wall height to total cross-
section depth). Alzeni and Bruneau (2014) used ABAQUS 
(Hibbett & Sorensen, 2011) to perform finite element simu-
lation of four experimentally tested planar C-PSW/CF with 
height-to-depth aspect ratio of approximately 2.5 using the 
Concrete Damage Plasticity (CDP) material model for the 
concrete. The simulations, however, were not able to capture 
the pinching effect observed in the cyclic testing. Polat and 
Bruneau (2017) used LS-Dyna (LSTC, 2013) to simulate 
the same experimental wall behavior. The pinching effect 
was successfully captured using the Winfrith model (LSTC, 
2013), which can simulate the opening and closure of con-
crete cracking that has been shown to be responsible for the 
pinching effect in concrete-filled members [e.g., Imani and 
Bruneau (2014) and Bruneau et al. (2018)]. Epackachi et al. 
(2015) also used LS-Dyna to simulate the in-plane inelastic 
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cyclic response of C-PSW/CF with a wall aspect ratio of 
1.0. Similarly, the observed pinching behavior was success-
fully replicated using the Winfrith model. Good agreement 
was reported between the experimentally obtained and the 
predicted values by the numerical models for the peak wall 
strength as well as for the reloading and unloading stiffness 
of the wall.

Kurt et al. (2016) used both ABAQUS and LS-Dyna to 
simulate in-plane inelastic cyclic behavior of C-PSW/CF 
with aspect ratio from 0.6 to 1.0. The Winfrith model was 
used in LS-Dyna analyses, while a brittle cracking material 
was used in ABAQUS to model concrete. Reasonable agree-
ment of the wall strength and stiffness was reported (for both 
LS-Dyna and ABAQUS models) based on the comparison of 
pushover analyses with the experimentally measured enve-
lope curves.

The above studies investigating response using different 
concrete models typically focused on numerically replicating 
the observed flexural hysteretic behavior of the walls. While 
use of the Winfrith model has proven to be more effective 
for this purpose, one of the criticisms of this concrete model 
is that it does not exhibit shear dilation under compression 
(Wu et al., 2012).

4  Investigation of Concrete Confinement, 
Passive Lateral Pressure and Tie Bar Axial 
Force

4.1  General

One of the mechanisms that can conceivably produce axial 
force demands on the tie bars is related to the shear dila-
tion of concrete under compression. Similar to the confine-
ment action developed in reinforced concrete columns and 
walls due to the restraining action created by the transverse 
reinforcement, the tie bars in C-PSW/CF can provide con-
finement action where compression is developed in the 
cross-section of a planar C-PSW/CF under in-plane flex-
ure. In C-PSW/CF, this confining action is related to the 
restraining force that can be developed by the tie bars and 
steel web plates, which are related to tie bar axial rigid-
ity and yield strength, and web plate flexural rigidity. The 
restraining action builds up in the form of passive lateral 
pressures that are related to the lateral expansion of concrete 
(shear dilation) under axial deformation. Therefore, to pre-
dict tie bar axial force demand through numerical solution, 
the passive lateral pressures and the confining action must 
be modeled using a concrete constitutive model capable of 
simulating the concrete shear dilation. Most importantly, it 
also requires an understanding of the 3-D flow of forces that 
lead to axial force demands in the tie bars. As such, it is one 

of the objectives of the study reported here to investigate 
how confinement develops and varies within the volume of 
the infill concrete inside C-PSW/CF using a broadly used 
concrete constitutive model.

This was done by a parametric study carried out for dif-
ferent C-PSW/CF having different wall parameters (such as 
tie bar spacing, wall thickness, and wall depth) and the find-
ings from that study were used to investigate: infill concrete 
confinement between the sandwiching plates of the wall 
(inside the volume of the infill concrete considering axial 
stress variation); passive lateral pressure distribution at the 
steel–concrete interface (considering interface nodal forces), 
and; resulting tie bar axial force demands (accounting also 
for the influence of steel plate local buckling).

4.2  Selection of Concrete Model

A preliminary study was first conducted to select a concrete 
model able to provide an acceptable representation of global 
wall response (i.e., in terms of cyclic stiffness and strength) 
while allowing the concrete dilation needed to provide rea-
sonable tie forces.  For this purpose, the previously devel-
oped and benchmarked finite element wall model that used 
the Winfrith model to capture global in-plane flexural wall 
response [developed by Polat and Bruneau (2017)] was re-
used, but considering two other concrete models that include 
dilation effects, namely the Karagozian and Case Concrete 
(KCC) and Continues Surface Cap Model (CSCM) models 
(available in LS-Dyna). Evidently, because both the KCC 
and CSCM models can simulate shear dilation, results for 
both models show compression axial stress distributions that 
varied through the thickness of the infill concrete (contrary 
to the results for Winfrith model, which has no shear dila-
tion).  However, while both the KCC and CSCM models 
could not simulate the pinching experimentally observed in 
the inelastic hysteretic flexural behavior of the walls, results 
from the wall using KCC model was better in agreement 
with the actual wall response. Furthermore, the prediction of 
wall strength by the KCC model was almost the same as that 
from the benchmarked model (and of the actual wall), while 
it was overpredicted by the CSCM model.  With respect to 
axial stress distribution along the cross-section, compression 
depth obtained with KCC model was found to be in better 
agreement than that obtained with the Winfrith and CSCM 
models. Based on the above findings from the preliminary 
study, the KCC model was chosen to investigate concrete 
confinement, passive lateral pressure, and tie bar axial force 
demand for the current parametric study considering differ-
ent C-PSW/CF.  More details on this preliminary study and 
on reasons that supported the selection of the KCC model 
for this study are provided in  Appendix 1.
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4.3  Description of Walls

As a reference starting point, the walls used in this study 
to investigate tie bar axial force during in-plane flexure 
were modified versions of the C-PSW/CF wall with bound-
ary elements tested by Alzeni and Bruneau (2017) under 
cyclic in-plane bending. Figure 1a shows the plan view and 
dimensions of the wall cross-section, and Fig. 1b shows 
the elevation view of the wall base. The boundary elements 
of the wall consisted of half-circular hollow structural 
sections (half-HSS 8.625 × 0.322) that have a diameter of 
219 mm (8.625 in) and a thickness of 8.18 mm (0.322 in). 
The wall skin consisted of steel plates with a thickness of 
7.94 mm (5/16 in) and a width of 1016 mm (40 in). The 
steel web plates were interconnected by tie bars (welded 
to the steel plates) with a diameter of 25.4 mm (1 in). The 
vertical and horizontal spacing between adjacent tie bars 
were 203 mm (8 in), except that horizontal spacing was 
152 mm (6 in) between the last tie bars close to wall edge. 
The wall was a cantilever with a height of 3048 mm (120 
in). The concrete used was self-consolidating concrete and 
had a uniaxial compressive strength of 48 MPa (6.9 ksi) 
(obtained from concrete cylinder tests), the steel web plate 
had a yield strength of 427 MPa (62 ksi) and the steel HSS 
had a yield strength of 317 MPa (46 ksi). Note that no test 
data were available for tie bars. Their yield strength was 
assumed to be 345 MPa (50 ksi). Further details on mate-
rial properties and a representative stress–strain curve for 
steel are reported in Alzeni and Bruneau (2017). Note that 

a group of four tie bars is identified in Fig. 1b. These are 
denoted as  T11,  T12, for the first tie bar level, and  T21,  T22 
for the second tie bar level. Axial force demands will be 
monitored in these found tie bars in the parametric study.

However, for the purpose of the present parametric study, 
the above wall could not be used as-is, because its boundary 
elements work together with the tie bars to resist the confine-
ment pressure, which would make it impossible to generalize 
results—for example, in wider walls, tie bars in the flexural 
compression block would be further away from the bound-
ary elements. Therefore, the model shown in Fig. 1a, was 
modified to not have boundary elements, as shown in Fig. 2. 
The wall model shown in Fig. 2a has the same dimensions 
as the web of the reference wall (i.e., it is the reference wall 
without its boundary elements). Two variations of this model 
were developed to investigate the effect of changing the hori-
zontal and vertical spacing of the tie bars, the thickness of 
the infill concrete, and the wall depth, on the results. These 
models are referred to as Models A, B, and C, as illustrated 
in Fig. 2a–c. As shown in Fig. 2a, Model A has the same 
dimensions as the benchmarked model; Models B (Fig. 2b) 
and C (Fig. 2c) have tie bar spacing of w1 = w2 = 305 mm 
(12 in), which is 150% more than Model A; Model B also 
has a concrete thickness of tc = 254 mm (10 in) instead of 
203 mm (8 in), and Model C has a larger wall depth equal to 
1422 mm (56 in) instead of 1016 mm (40 in). The steel and 
concrete material properties were kept the same in all cases.

In addition to the above three models, a variation of 
Model A was developed to investigate the influence of 
steel plate local buckling (by explicitly preventing the steel 
plate from buckling) on concrete confinement, confining 

Fig. 1  Reference C-PSW/CF: a plan view, and; b elevation view of 
the wall base

Fig. 2  Cross-section of wall models used in the parametric study: a 
Model A; b Model B; c Model C, and; d Model A-2
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pressures, and tie bar axial force demand in absence of 
prying action (the effect of prying action is addressed in 
Section  2). As shown in Fig. 2d this model is referred 
to Model A-2 and has thicker steel web plates equal to 
25.4 mm (1 in) instead of 7.94 mm (5/16 in) to prevent 
the steel plate from local buckling. For that model, beyond 
increasing the plate thickness, the yield strength and elas-
tic modulus of the steel material model were adjusted so 
that the global lateral stiffness and strength of the wall 
model was not different than that for Model A. For exam-
ple, the yield strength of the Model A-2 is obtained from 
Fyplts1∕ts2 = 134 MPa(19.4 ksi) , and the elastic modulus is 
obtained from 

(

ts1∕ts2
)

Es = 62487 MPa(9063 ksi) , where, 
Fypl, Es, and  ts1 are, respectively, the plate yield strength, 
elastic modulus and plate thickness of Model A, and;  ts2 is 
the plate thickness of Model A-2.

4.4  Tie Bar Slip Model in Finite Element Modeling

The numerical study conducted here used the previously 
developed finite element modeling and analysis procedures 
by Polat and Bruneau (2017).  Complete details of this 
model are not repeated here due to space constraints, but 
some key aspects of the material models used are presented 
in Appendix 1.  However, for the current study, a different 
approach was adopted for tie bar modeling, referred to as 
the tie bar slip model, as explained below. In the previous 
model, tie bars were modeled with beam elements having 
the same length as the solid elements of the concrete and tie 
bar nodes were coupled with the solid nodes of the concrete 
in three directions so that the slip of the tie bar elements was 
constrained by the concrete elements (see  Appendix 1 for 
details of the numerical models developed using LS-Dyna). 
(Note that composite action in C-PSW/CF is achieved by 

the shear transfer between the concrete and steel, which is in 
part coming through the tie bars and therefore necessitates 
the use of beam elements for modeling of the tie bars, rather 
than truss elements that do not have shear stiffness.) Here, 
instead, tie bar (beam element) nodes were coupled with 
the solid element nodes of the concrete in the two orthogo-
nal direction transverse to the bar with no coupling in the 
longitudinal direction of the bar, to allow longitudinal bar 
slippage inside the concrete. Zero length rigid links were 
used in the two transverse orthogonal direction to achieve 
the coupling. Figure 3 shows an illustration of tie bar slip 
model. Note that tie bar elements are terminated at the sur-
face of concrete and do not continue to the steel plate shell 
element. Therefore, to connect the tie bar end to the steel 
plate shell element, it is necessary to use a constraint that 
can transfer forces from tie bar end to the steel plate. One 
simple way is to use the Spotweld constraint with no failure 
limit. At the steel plate-concrete interface, the constrained_
spotweld option was used to connect the beam element end 
nodes to shell element nodes of the web plate (note that the 
web plates, as shell elements, do not have a visible thick-
ness; consequently, there is a gap equal to half the plate 
thickness at the steel plate-concrete interface because the 
shell elements are located at their mid-thickness (a default 
and suggested setting for modeling shell elements in LS-
Dyna). Although there is a visible gap, the shell thickness 
is accounted in the contact simulation of the steel web plate 
and concrete in the analysis). This spotweld constraint cre-
ates a rigid beam that transmits moments, shear and normal 
forces. Note that the spotweld constraint was defined as full-
strength and no failure limit state was defined. The above 
modeling approach did not include adhesion and friction 
bond between tie bars and the infill concrete, which results 
in unrestrained slip of the tie bars inside the concrete. Tie bar 

Fig. 3  Illustration of tie bar slip 
model
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axial force demand obtained with this slip model is constant 
over the entire tie bar length. This was done for simplicity, as 
warranted within the stated objectives for this paper.

4.5  Investigation of Confinement Through Axial 
Stress Variation in Concrete

The modified wall models shown in Fig. 2 were used to 
investigate the variation of axial stresses through the thick-
ness of the infill concrete. The variation of confinement of 
the infill concrete can be inferred from the variation of axial 
stresses; when the lateral expansion of concrete is prevented, 
the axial strength of the confined concrete can exceed its 
uniaxial unconfined compressive capacity. For the typical 
planar C-PSW/CF shown in Fig. 2, the effect of confinement 
varies through the thickness of the infill concrete. When the 
infill concrete is modeled by layers of solid elements across 
the wall thickness, as done here, each layer exhibits different 
level of confinement.

For each model shown in Fig. 2, a pushover analysis was 
performed, and axial stresses were obtained in each layer 
of the infill concrete. Figures 4 and 5 show the axial stress 
distribution at the: (a) outermost, and; (b) innermost con-
crete layers of a wall region limited to half the wall depth 
[for clarity of labeling the figure, the results over the wall 

half depth (508 mm–20 in) are only presented up to 500 mm 
(19.7 in) in these figures] and a height of 500 mm (19.7 in) 
from the wall base; obtained for Models A and C, respec-
tively. Axial stress distribution obtained for Models B and 
A-2 are not included here due to space constraints. As shown 
in Fig. 4a, concrete axial stresses (and thus confinement) 
peaks at tie bar locations on the outermost layer of the infill 
concrete where restraining forces are locally developed. 
These restraining forces counteract the lateral expansion of 
the confined concrete. In between the tie locations, axial 
stresses vary in a parabolic fashion both vertically and hori-
zontally, spanning from tie bar to tie bar. Note that, for this 
model, local buckling occurs between the first and second 
rows of tie bars. Incidentally, a more subtle occurrence of 
local buckling also developed between the second and third 
rows of tie bars, and similar variation in concrete forces is 
also visible there. As shown in Fig. 4b, axial stresses peak 
towards the center of the group of tie bars in the innermost 
layer of the infill concrete. Although a figure for Model B 
is not provided, axial stresses peaked at the two vertical tie 
bar locations closest to the wall edge. As shown in Fig. 5 for 
Model C, which has larger wall depth, variation of the axial 
stresses in the outermost and innermost layers are similar 
to Model A (Fig. 4), except that peaks are bigger due to the 
increased tie bar spacing. Although a figure for Model A-2 is 

Fig. 4  Axial stress distribution in infill concrete for Model A at 4% drift ratio in the: a outermost layer, and; b innermost layer

Fig. 5  Axial stress distribution in infill concrete for Model C at 4% drift ratio in the: a outermost layer, and; b innermost layer
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not provided due to space constraints, variation of concrete 
axial stresses (and thus confinement) between the tie bar 
levels were similar to the results obtained for Model A with 
subtle changes (e.g., less acute stress peaks and smoother 
stress variation). The fact that the stresses were more uni-
formly distributed in that case is attributed to the fact that 
Model A-2 has thicker plates and exhibits no plate local 
buckling. In this case, the peak values of the stress distribu-
tion in the outermost layer are lower whereas stress values 
in between tie bar levels are higher.

While the above figures illustrate how concrete stress var-
ied across the walls’ depth, length, and thickness, the same 
results as in  Figs. 4 and 5 are plotted in  Figs. 6 and 7 to 
facilitate reading of the numerical values between the hori-
zontal and vertical adjacent tie bars in the outermost layer. 
More importantly, results also illustrate how these stresses 
progressively change upon larger drifts, up to the 4% drift 
value for which results are shown in  Figs. 4 and 5.  Figs. 6a 
and 7a show the stress distribution at two wall elevations, 
namely at the second tie bar elevation (at 305 mm (12 in) for 

(a) (b)

Fig. 6  Axial stress distribution in outermost layer of infill concrete for Model A at: a elevations = 203 mm and 305 mm, and; b depths = 318 mm 
and 445 mm

(a) (b)

Fig. 7  Axial stress distribution in outermost layer of infill concrete for Model C at: a elevations = 203 mm and 406 mm, and; b depths = 318 mm 
and 597 mm
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Model A, and; at 406 mm (16 in) for Model C) and at mid-
height of the first two tie bar elevation (at 203 mm (8 in) for 
Model A, and; at 254 mm (10 in) for Model C).  Figs. 6b and 
7b show the stress distribution at two wall depth locations 
from the wall centerline, namely at the outermost location 
of tie bars (at 445 mm (17.5 in) for Model A, and; 597 mm 
(23.5 in) for Model C) and at mid-length of the two tie bar 
locations (at 318 mm (12.5 in) for Models A and C). The 
location of tie bars and the unconfined compressive strength 
of the concrete [9.69 ksi (48 MPa)] are shown by dashed 
lines.

Results show that, at larger drifts, confinement is 
increased at tie bar locations while it is reduced between 
the tie bar levels. For example, considering the outermost 
layer of the infill concrete thickness of Model A shown in 
Fig. 6b, the monitored concrete strength reduces below the 
actual compressive strength level at mid-height between 
the vertical tie bar levels, starting at the 2% drift ratio, and 
eventually becomes ineffective at the larger drifts. Similar 
behavior was particularly visible for Model B between the 
vertical tie bar levels (figure not included here). As shown 
in Fig. 7, the axial stress distribution for Model C is close 
to that shown for Model A. Axial stress distribution in these 
figures between the vertical tie bar levels also indicates that 
concrete is not effectively confined at over approximately 
50% to 70% of w1. This value is closer to 50% for smaller 
tie bar spacing (e.g., Model A) and closer to 70% for larger 
tie bar spacing (e.g., Models B and C). In other words, 
because of the larger tie bar spacing used for Models B and 
C compared to Model A, larger part of the concrete core 
becomes less effective at the mid distance between the tie 
bars and resists lower compression stresses. For Model A-2, 
in absence of plate local buckling, the peaks at the tie bar 
locations are lower compared to Model A, and the stress 
variation between tie bar levels is less severe and smoother.

4.6  Investigation of Passive Lateral Pressure 
Through Interface Nodal Forces

The variation of the concrete axial stresses reported in the 
previous section within the vicinity of a group of tie bars 
can also be shown to be related to the passive confining 
pressure created as a result of concrete lateral expansion at 
the steel plate—concrete interface. This was done here by 
using the interface reaction forces at the nodes of the mesh 
as a proxy for passive confining pressures (by equilibrium, 
the nodal reaction forces are the result of contact interface 
forces and pressures). These forces were obtained for the 
wall models shown in Fig. 2. The history of the interface 
nodal forces in the normal direction was obtained from the 
pushover analyses performed and plotted over the surface 
area of the steel plate at 4% drift ratio. Figure 8a, b shows the 
distribution of the passive confining pressure for Models A 
and C for a region covering half the wall depth and a height 
of 500 mm (20 in) from the wall base (results for Models 
B and A-2 are not included here due to space constraints). 
As shown, the envelopes of confining pressures are conical 
shapes having peaks values at the tie locations and near-
zero values between the tie bar levels. For Model A-2, the 
confining pressure variation is smoother and reaches lower 
values at the tie bar levels). The magnitude of these result-
ing forces is significant and drives the development of axial 
forces in tie bars.

The interface pressure distribution shown in Fig. 8 is 
numerically shown in  Figs. 9 and 10 at the horizontal and 
vertical tie bar locations for Models A and C, respectively. 
These figures show how nodal forces corresponding to inter-
face pressures progressively change upon larger drifts, up to 
the 4% drift value considered here. The pressure distribution 
shown are close to triangular shape for the reported drift lev-
els, which is logical since these plots are actually 2-D slices 
of the conical shapes shown in Fig. 8.  Figs. 9 and 10 show 
that the base of these cones consistently has a base diameter 
of about 100 mm (4 in), regardless of the wall model and 
tie bar location. The peaks of the pressure distribution vary 

Fig. 8  Interface nodal force distribution at 4% drift ratio for: a Model A, and; b Model C
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depending on the location of the tie bars and the peak of the 
pressure distribution is related to axial strain demand at the 
region where the tie bar is located. Note that, as discussed 
and shown in Fig. 3 in the finite element modeling, the tie 
bars were modeled as line elements and the 3-D geometry 
of the bars were not explicitly modeled. Modeling the bars 
with solid elements to capture their actual diameter might 
increase the diameter of the conical pressure distribution 
reported here for a 25.4 mm (1 in) tie bar.

4.7  Investigation of Tie Bar Axial Force Demand due 
to Confinement

The interface nodal forces shown in  Figs. 9 and 10 were 
created by the axial force developed in the tie bars to resist 
concrete lateral expansion. Figure 11a–d shows the axial 
force history of the tie bars for the wall models considered 
for increasing drift ratios. For all the wall models consid-
ered, peak force demands occurred in the exterior tie bars, 

(b)(a)

Fig. 9  Interface nodal force distribution at selected tie bar locations for Model A: at: a elevations = 102  mm and 305  mm, and; b 
depths = 305 mm and 457 mm

(a) (b)

Fig. 10  Interface nodal force distribution at selected tie bar locations for Model C: at: a elevations = 102  mm and 406  mm, and; b 
depths = 305 mm and 610 mm
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namely  Tie12 and  Tie22  defined in  Fig. 1b. For  Tie22, the 
axial force at 4% drift ratio, is: 158 kN (35.5 kips), 174 kN 
(39 kips), 192 kN (43.2 kips), and 143 kN (32 kips) for 
Models A, B, C, and A-2, respectively. This compares with 
an expected tie bar capacity of 174.2 kN (39.3 kips) for 
a 25.4 mm (1 in) diameter bar having a yield strength of 
345 MPa (50 ksi). Note that these values would be less at 
lesser drift and, most importantly at lesser axial strains in 
the walls. Incidentally, most C-PSW/CF walls tested in the 
past have developed fracture of the steel plates at lower 
drifts than 4% [e.g. Ramesh (2013); Alzeni and Bruneau 
(2017)]. Fracture has been neglected in the above finite 
analysis models, but would eventually need to be taken 
into account when comparing axial demands in tie bars 
in experiments.

The larger force values obtained with Models B and C 
are attributed to the larger tie bar spacings in these walls 
(w1 = w2 = 305 mm (12 in) compared to the spacing of 
w1 = 203 mm (8 in), w2 = 152 mm (6 in) in Models A and 
A-2. On the other hand, the larger force value in Model A 
compared to Model A-2 is attributed to influence of plate 
local buckling, which is absent in Model A-2. Note that, 
for  Tie22, there is a 15 kN (3.37 kips) difference in the 
force obtained with Models A and A-2. The contribution 

of the plate local buckling to tie bar axial force demand 
can be explained by a prying action mechanism which 
is described in the following section. In that section, a 
separate numerical study is also carried out to study the 
development of this prying mechanism and its impact on 
the resulting tie bar axial forces.

5  Tie Bar Axial Force Demand Due to Prying 
Action

5.1  General

A second mechanism that can produce large tie bar axial 
forces is the prying action effect that develops during local 
buckling of the steel plates in the compressive regions 
of the cross-section during wall flexure. It is currently 
unknown if the tie bar axial forces developed by prying 
action are significant. This is investigated below, first by 
developing some equilibrium equations to explain the phe-
nomena, and then using finite element analysis to illustrate 
the potential influence and significance of the plate thick-
ness and tie bar diameter on tie bar axial force demands 
due to prying action. In the results presented below, the 

Fig. 11  Tie bars axial force 
histories: a Model A; b Model 
B; c Model C; d Model A-2

(a) (b)

(c) (d)
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magnitude of prying forces is compared to those obtained 
previously due to confinement effects, to assess their rela-
tive significance.

5.2  Free‑Body Diagrams

In a typical planar C-PSW/CF subjected to in-plane flex-
ure, plate local buckling will develop at some point under 
flexural wall deformation. For a well-designed C-PSW/
CF, this will occur only after development of the plastic 
moment of the wall. The buckling wave typically starts to 
form between the tie bars at the location of the maximum 
moment, and more significantly in the regions of larger 
flexural compressive strains near the edge of the wall. Note 
that for a typical planar wall, the buckling wave is not 
uniform in amplitude but varies along the length of the 
wall in a three-dimensional fashion. For simplicity here, 
these variations of the buckling wave along the length of 
the wall are neglected, assuming a uniform amplitude for 
the buckling wave instead.

Figure 12a, b schematically illustrates how the local buck-
ling mechanism could induce forces in the tie bars by prying 
action. Assuming yield lines along the horizontal lines of tie 
bars, focus here is on a tributary length of steel plate equal 
to the horizontal spacing between tie bars (Fig. 12a). Fig-
ure 12b schematically shows free-body diagrams of: (i) the 
equilibrium of forces within the buckled zone between two 
horizontal rows of tie bars, and; (ii) the equilibrium of forces 
due to the prying action mechanism that develops adjacent to 
that zone. Due to the presence of a plastic flexural moment 
along the yield line, the second free-body diagram shows 
that moment equilibrium about point A is achieved by the 

moment created in the tie bar, the force couple created by 
the force in the tie bar (T1) and the resultant force of the 
bearing pressures on the concrete (Qmax), and the moment in 
the plastic hinge (Fig. 12b). Note that a secondary moment 
(PΔ1) is also created due to the eccentricity, Δ1 , between the 
top and bottom axial forces shown in that figure and consid-
ered in the moment equilibrium. Assuming an equivalent 
resultant force, Qmax, acting at the center of the pressure 
distribution, the tie bar force, T1, per horizontal force equi-
librium, is acting in equal and opposite direction to the bear-
ing pressure resultant 

(

T1 = Qmax

)

 . The prying length, Lpr, is 
given by the distance between these two forces. The prying 
tie force, T1, can be expressed by the following equation;

where Mp is the plastic moment of the steel plate, Mtie is 
the moment demand in the tie bar and P is the axial force 
demand in the steel plate. Note that for well-proportioned 
walls, the contribution of the tie bar moment and secondary 
moment is small and can be ignored compared to the out-of-
plane plastic moment of the steel plate. For example, for a 
tie bar diameter of 12.7 mm (0.5 in), plate thickness of 8 mm 
(5/16 in), and a corresponding maximum tie bar spacing of 
203 mm (8 in.), results from analysis gave a contribution of 
the tie bar moment Mtie ≈113 kN mm (1 kip in) and a sec-
ondary moment PΔ1≈181 kN mm (1.6 kip-in), both smaller 
than the value of the out-of-plane plastic moment of the steel 
plate [ Mp ≈ 1356 kN mm (12 kip in)]. Therefore; Eq. (1) can 
be simplified to:

Note that the plastic moment should actually be reduced 
to account for vertical axial force also acting in the plate, but 
conservative results are obtained neglecting this effect. Per 
simple plastic theory, for the yielding strength of the plate, 
Fyweb , and thickness, t, the plastic moment is:

Note that, for a typical planar C-PSW/CF, during local 
bucking of the plate, the prying action effect develops con-
currently with the confinement action mentioned earlier and, 
as a result, in finite element analyses, values of the bear-
ing pressures that develop at the steel–concrete interface 
include components from both the prying mechanism and 
the confining pressure. This makes it challenging to iden-
tify the relative contribution due to each factor, such as to 
quantify the prying force due to the mechanism described 

(1)T1 =
Mp −Mtie + PΔ1

Lpr

(2)T1 =
Mp

Lpr

(3)Mp = Fyweb

w2t
2

4

Fig. 12  Development of prying action: a local buckling on segment 
of wall considered, and; b free body diagrams
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above excluding the influence of the concurrent confining 
pressures. In other words, in the case where there is also 
confining pressure acting concurrently, the bearing pressure 
shown in Fig. 12a adds up to the confining pressure, which 
results in a larger force resultant possibly acting at a dif-
ferent location. A different model is therefore needed to be 
able to isolate the effect of prying action using finite element 
analysis. In the following section, the development of prying 
action is investigated using such a model.

5.3  Numerical Studies

In this section, tie bar axial force demand that develop due 
to prying action of the steel plate undergoing local buck-
ling is investigated. A parametric study was carried out to 
investigate the significance of the prying mechanism fol-
lowing steel plate local buckling, assuming no confining 
pressures can develop in the concrete. This was achieved by 
constraining the concrete lateral expansion in the model, as 
described below. Also, to simplify the analysis and allow to 
better identify forces developing due to prying action with-
out having to contend with variations of the amplitude of 
plate local buckling along the length of the wall, analysis of 
a wall under pure compression was performed (i.e., to obtain 
uniform amplitude of the buckling wave and plastic moment 
along the length of the wall). Moreover, to increase compu-
tational efficiency, a partial wall was considered.

Figure 13 shows the geometry and dimensions of the 
partial wall in: (a) a cross-section view, and; (b) an eleva-
tion view. The model consists of three tie bars along a total 
height of 610 mm (24 in) with vertical tie bar spacing of 
w1 = 203 mm (8 in)—effectively corresponding to the tribu-
tary area of one bar in an actual wall. Symmetry boundary 
conditions were applied to the sides of the model to simulate 
continuity along the wall depth with a tributary length equal 
to a horizontal tie bar spacing of w2 = 203 mm (8 in). The infill 
concrete has a thickness of tc = 203 mm (8 in) but symmetry 
boundary conditions were used for the numerical model at 

mid-thickness, resulting in a 102 mm (4 in) thick model. For 
the numerical model, the same material and element types 
previously described were used for the steel and concrete 
[Fyweb = 427 MPa (62 ksi), fc’ = 48 MPa (7 ksi)] and tie bars 
were assumed to remain elastic. The element mesh from pre-
vious studies was refined here by reducing the width of each 
element in half [i.e., shell elements here are 12.7 × 12.7 mm 
(0.5 × 0.5 in) and the solid elements are 12.7 × 12.7 × 12.7 mm 
(0.5 × 0.5 × 0.5 in)]. The reason for using a more refined mesh 
was to obtain more nodal force output from the steel–concrete 
interface nodes, to allow plotting prying action forces more 
precisely without numerical smoothing. Tie bars were mod-
eled using the tie bar slip model described earlier.

The lateral expansion of the concrete in the finite element 
model was prevented by fixing each of the concrete inter-
face (concrete–steel plate) nodes in the normal direction. 
As part of the parametric study, cases for plates with dif-
ferent thicknesses were considered, namely 4.76 mm (3/16 
in), 7.94 mm (5/16 in), 12.7 mm (1/2 in), and 15.88 mm (5/8 
in). Furthermore, different tie bar diameters (ϕ) were con-
sidered, namely: ϕ = 6.35 mm (0.25 in), 12.7 mm (0.5 in), 
and 19.05 mm (0.75 in). The model was subjected to axial 
deformations at the top in the form of a displacement applied 
on both the concrete and steel plate nodes. Figure 14 shows 
the finite element model developed in LS-Dyna and the von-
Mises stress contours of the plate at peak deformation.

Figure 15a–d shows the resulting bearing nodal force 
distributions for a partial elevation of the wall (i.e., 
approximately between the second and third tie bar eleva-
tion) for the case having ϕ = 12.7 mm (1/2 in) tie bars and 

Fig. 13  Partial wall used for investigation of prying forces: a plan, 
and; b elevation

Fig. 14  LS-Dyna model for prying action investigation: a unde-
formed shape, and b von-Mises stress contours in deformed shape
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the four plate thicknesses considered: (a) 4.76 mm (3/16 
in); (b) 7.94 mm (5/16 in); (c) 12.7 mm (1/2 in); and (d) 
15.88 mm (5/8 in). Note that results are reported for wall 
deformations greater than those needed for the steel plate 
to attain its plastic moment. As seen in Fig. 15a–d, bearing 
forces develop at a certain distance from the second tie bar 
elevation (note that the second tie bar is 305 mm (12 in) 
above the wall base). Figure 15 also shows that the dis-
tributed forces increase in amplitude and act over a greater 
surface with increasing plate thicknesses, which results in 
larger values of the prying length and prying forces.

Figure 16a–d shows the build-up of the bearing nodal 
forces along the half plate width with increasing axial wall 
deformation. Note that, the distance between the second 
tie bar elevation [305 mm (12 in)] and the peak points of 
each of the single curves (at maximum axial deformation) 
are taken as prying lengths, and they are reported at every 
25.4 mm (1 in) along the width of the plate from the wall 
zero location. The figures also show a uniform buckling 
wave along the plate width such that the peak amplitudes 
of the nodal forces (obtained along the plate width) have 
almost the same values with small variations when Mp is 
attained. For example, consider the nodal force distribu-
tion in Fig. 16d; the peak values of the nodal forces at 
the maximum axial deformations are about 1.25 kN (0.28 
kips). Note that force values obtained at the zero-width 

location are almost half the values reported in Fig. 16 
due to assignment of the symmetry boundary condition 
at these nodes and these values should be considered to 
actually be twice as large compared to the values reported.

As observed from Fig. 16, the prying lengths and the pres-
sure amplitudes increase with the thickness of the plate per 
equilibrium of moments with the developed plastic moment 
(recall that, per Eq. (2), Mp = Qmax Lpr). For example, per 
Fig. 16a–d at the maximum wall deformation, the average 
values of the prying lengths (reported within each plot) are: 
49.8 mm (0.78 in), 61.6 mm (2.425 in), 86.1 mm (3.39 in), 
and 101.9 mm (4.012 in); and the summed values of the nodal 
forces are: 11.8 kN (2.65 kip), 26.2 kN (5.89 kip), 50.7 kN 
(11.4 kip), and 71.3 kN (16.02 kip) for the cases of plate thick-
nesses equal to ts = 4.76 mm (0.187 in), 7.94 mm (0.313 in), 
12.7 mm (0.5 in), and 15.88 mm (0.625 in), respectively.

The variation of prying length (Lpr) and corresponding tie 
bar axial force with plate thickness and tie bar diameter is 
shown in Fig. 17a–b. Note that, the Lpr values reported in 
Fig. 17a are the average values obtained along the width of 
the plate reported in Fig. 16a–d; and the tie bar force values 
reported in Fig. 17b were obtained directly as element forces. 
As shown in Fig. 17a, the prying length increases (almost 
linearly) with increasing plate thickness and reduces slightly 
with larger tie bar diameters. The slight reduction of the Lpr 
values with larger tie bar diameters is attributed to the ability 

Fig. 15  Distribution of bearing pressure due to prying action after the development of plastic moment, considering plate thicknesses of: a 
4.76 mm (3/16 in); b 7.94 mm (5/16 in); c 12.7 mm (1/2 in), and; d 15.88 mm (5/8 in)
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(a)

(b)

(c)

(d)

Fig. 16  Distribution of bearing nodal forces due to prying action as a function of axial wall deformation considering plate thicknesses of: a 
4.76 mm (3/16 in); b 7.94 mm (5/16 in); c 12.7 mm (1/2 in), and; d 15.88 mm (5/8 in)
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of flexurally stiffer tie bars to contribute in resisting some of 
the plate bending moment. However, the bending stiffness of 
tie bars is generally small and can be ignored. For example, for 
the wall with ts = 15.88 mm (5/16 in) and ϕ = 19.05 mm (0.75 
in), the numerically predicted value of the bending moment 
in the tie bar (at the ultimate drift) is about 158 kN mm (1.4 
kip-in), while the bending moment from the plate plastic 
hinge is 1322 kN mm (11.7 kip-in). For the same wall but 
with ϕ = 0.5 in, the bending moment in the tie bar reduces to 
45 kN mm (0.4 kip-in). Note that the yield moments of the 
tie bars are 17.3 kN mm (0.153 kip-in), 138 kN mm (1.221 
kip-in), 467 kN mm (4.133 kip-in), for ϕ = 6.35 mm (0.25 
in), 12.7 mm (0.5 in), and 19.05 mm (0.75 in), respectively.

The theoretical results of T1, computed using Eq. (2), are 
also shown in Fig. 17b. Note that the numerically obtained 
average Lpr values from Fig. 17a were used for this calcu-
lation since there is no closed-form solution available at 
this time to determine this length, and; the Mp values were 
computed using Eq. (3). As shown in Fig. 17b, tie bar axial 
forces increase in the presence of thicker steel plates, and 
also slightly increase with increasing tie bar diameters. 
The observed slight increase of forces with increasing tie 
bars diameters is attributed to the reduced Lpr value that is 
obtained with larger tie bars.

Note that the difference between the theoretical results 
and the numerically obtained values increases with the plate 
thickness. This is attributed to the influence of the secondary 
moment ( PΔ1 ) in plate bending. The required axial force, 
P, for thicker plates is higher to obtain the same amount of 
plate deformation, Δ1.

Note that, tie bar axial force demand created by prying 
action, compared to forces created by the confining action, 
is relatively small for well-proportioned walls. For example, 
the previously examined tie bar axial force demand (i.e., for 
 Tie22) for Model A-2 under confining pressures was 143 kN 
(32 kips) for ts = 25.4 (1 in), where Model A-2 is the one for 
which buckling was prevented; recall that this is equivalent 
to ts = 7.94 mm (5/16 in) and w2 = 152 mm (6 in) in Model 
A where local buckling was not prevented. The tie bar axial 

force demand due to prying action, obtained here for the 
same plate thickness of 7.94 mm (5/16 in) and w2 = 203 mm 
(8 in) is about 25 kN (5.62 kips). Scaling for the narrower 
tie bar spacing of w2 = 152 mm (6 in) gives approximately 
19 kN (4.27 kips), which is nearly 13% of the tie bar axial 
force due to confining pressure alone.

As shown by Eqs. (1) and (2), tie bar axial force due to pry-
ing action will increase with plate thickness because the plate 
plastic moment varies as a function of the square of the plate 
thickness, but the above numbers suggest that prying action 
will not be the dominant factor defining tie bar axial forces, 
unless future experiments can demonstrate that confinement 
pressures developed in C-PSW/CF walls are significantly 
smaller than predicted by the above numerical analyses.

6  Conclusions

In this study, two factors, namely, confinement effects and 
prying action during local buckling, were numerically inves-
tigated to determine their impact on tie bar axial forces under 
inelastic in-plane flexural wall response. These effects are 
currently not considered in the design of C-PSW/CF. A tie 
bar slip model was developed and integrated in the finite 
element model for this purpose. The KCC model available 
in LS-Dyna was considered to investigate various aspects 
of confinement and tie bar axial force demands. The study 
showed that;

• Variation of axial stress distribution through the thick-
ness of the infill concrete showed that the effectively con-
fined concrete core is less than the nominal core area. 
The effectively confined core was shown to be influenced 
by lateral pressure distribution.

• The steel plate-concrete interface nodal force distribu-
tion, which illustrates where confinement pressures act-
ing on the steel plates are more significant, follows a 
conical shape at the tie bar locations. Peak forces at these 
locations slightly increase with the horizontal and verti-

Fig. 17  Effect of plate thick-
ness: a on prying length; b on 
tie bar axial force

(b)(a)
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cal spacing of the tie bar, while the base area of the coni-
cal shape is not significantly affected by tie bar spacing. 
The magnitude of the resulting forces at these locations is 
significant and drives the development of axial forces in 
tie bars. These findings provide insights for the formula-
tion of future theoretical models to calculate tie bar axial 
forces due to confining pressures.

• Plate local buckling introduces a prying mechanism and 
results in an increase of tie bar axial force demand. The 
prying action was shown to be related to the thickness 
and plastic moment of the wall plate, and prying length. 
A simple equation was developed to calculate prying 
forces for a known prying length. Although acting con-
currently, in comparison to tie bar axial force demand 
due to confining pressures, the increase in the tie bar 
axial force due to prying mechanism (due to plate local 
buckling) is found to be relatively low for typical range of 
plate thickness, but might become significant for thicker 
plates or if confinement effect is later experimentally 
proven to be less significant than obtained numerically.

It is recognized and important to emphasize that the mag-
nitude of concrete dilation is sensitive to the concrete model 
used and that the results presented in this study are contin-
gent on the models and assumptions adopted in this limited 
numerical study. Future research is desirable to investigate 
other concrete models to capture the above effects and trans-
late them in tie bar axial force demands for any composite 
wall geometry, and to determine when these forces may have 
an impact on design. This should include parametric studies 
comparing multiple concrete models in uniaxial, biaxial, and 
triaxial case studies, together with results for the C-PSW/CF, 
to determine the most appropriate concrete model to rigor-
ously capture the impact of dilational effects in this applica-
tion. However, most importantly, this will require experimen-
tal results that can provide validation against analytical results, 
recognizing that getting experimental results of axial forces 
acting on tie bars can be difficult in C-PSW/CF. Nonetheless, 
the findings presented in this exploratory paper are critically 
informative in guiding the design and instrumentation of such 
future experimental programs by the broader research com-
munity, as they identify the fundamental behaviors at play, 
as well as location and approximate magnitude of key forces, 
stresses, and strains that drive this behavior.

Appendix 1: Comparative Study using KCC 
and CSCM Concrete Models

Selection of Concrete Models

This Appendix presents details of the analyses performed 
to identify a simple concrete model that can reasonably 

predict wall strength and account for confinement effect. 
Note that in the aforementioned study by Polat and Bruneau 
(2017), the objective was to replicate the in-plane flexural 
wall response experimentally obtained by Alzeni and Bru-
neau (2017), focusing on global response and in particular 
on capturing the pinching effect observed in the hysteretic 
response, which was believed to be related to the opening 
and closing of the concrete cracks, and which was modeled 
successfully using the Winfrith model.  Fig. 18 shows the 
resulting comparison between the experimental and numeri-
cally obtained hysteretic curves using that model.  Fig. 19 
shows the corresponding resulting axial strain distribution 
in the steel plate. While the steel plate axial strains were 
predicted well, the wall compression depth was slightly 
over-predicted. Although good results were obtained with 
the Winfrith model, this may not be the best model when the 
objective is to predict the tie bar axial force demand. This 
is because, in C-PSW/CF, when the concrete sandwiched 
between steel web plates is under vertical axial compression 

Fig. 18  Comparison of experimental and numerical wall hysteresis 
using Winfrith model

Fig. 19  Comparison of axial strain distribution in steel plate for 
experimental and numerical resulting using Winfrith model
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due to combined bending and axial forces, shear dilation 
of the concrete can apply a horizontal pressure to the steel 
plate, which in turn introduces an axial force on the tie 
bars. This mechanism makes it essential to replicate passive 
confinement effects due to concrete shear dilation—which, 
unfortunately, is not a behavior accounted for by the Win-
frith model (Wu et al., 2012).

A large number of concrete constitutive models exist 
that have the ability to model dilation. The KCC and CSCM 
models were considered here because they offer the option 
to generate most of the needed model parameters with lit-
tle user input (although the KCC and CSCM models offer 
both complex material definition or parameter generation 
options); as such, structural engineers can easily define the 
nonlinear behavior of concrete per these models with knowl-
edge of the unconfined uniaxial compressive strength and 
a few basic concrete properties, namely, mass density for 
the KCC models, and aggregate size for the CSCM models.

These models have also been investigated by various 
researchers. In particular, Wu et al. (2012) investigated 
these concrete models for their effectiveness in capturing key 
aspects of concrete behavior, namely, post-peak softening, 
shear dilation, and confinement effects for plain concrete 
cylinder tests, using LS-Dyna. Schwer and Malvar (2005) 
compared the results obtained using the KCC model when 
specifying only the unconfined compression strength of a 
well characterized 45.6 MPa concrete, based on original 
well-characterized concrete, with those from various mate-
rial characterization tests. They reported that the complex 
behavior of concrete can be modeled successfully with the 
default parameter generation data of the KCC model. Ter-
ranova et al. (2018) used the KCC and CSCM models to 
generate benchmark stress–strain data using the Smooth 
Particle Hydrodynamics (SPH) formulation in LS-Dyna. In 
light of the lack of experimental data on tie bar axial forces 
in C-PSW/CF, the use of more complex model was also jus-
tified at this time.

Description of the Finite Element Modeling

Aspects of the finite element modeling and analysis pro-
cedures developed for the reference wall studied by Polat 
and Bruneau (2017) are described below, as many of these 
parameters are re-used here. The concrete was modeled 
using an eight-node solid elements (Solid 1) with reduced 
integration and hourglass control; the steel web plates 
and the boundary elements were modeled using four-node 
fully integrated shell elements (Shell 16), and; tie bars 
were modeled using two node beam elements with the 
Hughes-Liu beam formulation (Beam 1) with two inte-
gration points. For the steel–concrete interface, the auto-
matic_surface_to_surface_mortar contact with an inter-
face friction coefficient of 0.3 was used. The dimensions 

of the shell and solid elements were determined based on 
results from a convergence study. The shell elements were 
25.4 mm × 25.4 mm (1 in × 1 in) and the solid elements 
were 25.4 mm × 25.4 mm × 25.4 mm (1 in × 1 in × 1 in) 
in size. Note that a total of four layers of concrete in the 
transverse direction were used in the numerical model of 
the reference wall.

MAT003 (with kinematic hardening) was used for 
the steel web plates, half-HSS boundary elements, and 
tie bars. Note that MAT003 is a bi-linear model which 
requires the definition of the elastic modulus, Es , the 
yield strength, Fy , the tangent modulus, ET  , and a hard-
ening parameter for kinematic hardening or isotropic 
hardening. The elastic modulus used for the steel web 
was Es = 205,463 MPa (29,800 ksi) and for the boundary 
element Es = 189,605 MPa (27500 ksi), based on experi-
mental results of steel coupons for the specimens. The 
yield strength used for the steel web was 427 MPa (62 ksi) 
and for the boundary element 317 MPa (46 ksi). Tangent 
modulus used for the web plate was 551 MPa (80 ksi) 
and for the boundary elements 344 MPa (50 ksi). Con-
crete compressive strength was set as fc’ = 47.6 MPa (6900 
psi). In the LS-Dyna model, a concrete tensile strength 
of ft’ = 4.76 MPa (690 psi) and a Poisson’s ratio, v, of 0.2 
were also specified. For the CSCM concrete model, the 
unconfined compression strength is 30 MPa (4.351 ksi) 
(Murray, 2007). Note that for the KCC and CSCM con-
crete models, the user has the option of directly inputting 
material properties or requesting default material prop-
erties based on the unconfined compressive strength of 
concrete—as mentioned previously. Note also that, for the 
default option in the CSCM concrete, the internally cal-
culated values for a number of parameters by the model 
are reported to have been derived based on the properties 
of concrete ranging in strength from 20 to 58 MPa (2.901 
to 8.412 ksi) (LSTC, 2013; Murray, 2007). In all cases, 
aggregate size was specified as 7.9 mm (0.31 in.).

The elastic modulus of the concrete, in the benchmarked 
model, was adjusted to 0.5Ec (MPa or ksi) where 
Ec(psi) = 57000

√

f
�

c
(psi) to match the experimentally meas-

ured wall elastic stiffness. For the KCC model, the elastic 
modulus of concrete is internally calculated. The value of 
the internally calculated value for the KCC model can be 
obtained by checking the output log files from the analysis, 
which, in this case, confirmed that the values of the elastic 
modulus was equal to Ec for the wall with the KCC model.

The walls were subjected to in-plane lateral displace-
ments at their top end, applied to all the steel and concrete 
nodes at that height. The experimental loading protocol 
provided by (Alzeni & Bruneau, 2017) was used in the 
numerical solution—details on this protocol are not pro-
vided here due to space concerns.
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Comparison of Inelastic Cyclic Wall Response Using 
KCC and CSCM Concrete

Wall response using the KCC and CSCM models were com-
pared against that of the benchmark wall using the Winfrith 
model, using fixed-based boundary conditions in all cases. 
Note that the benchmarked wall was originally developed by 
explicitly accounting for foundation flexibility of the speci-
mens, but this was avoided here because it was unnecessary. 
Comparison of the resulting hysteretic responses in terms of 
base moment versus wall drift ratio is shown in  Fig. 20a–b, 
where the results are compared for the walls with: (a) Win-
frith and KCC models, and; (b) Winfrith and CSCM models. 
Note that the wall with the CSCM model exhibits almost no 
pinching, whereas the amount of pinching captured by the 
wall with KCC model is somewhat between what has been 
obtained for the walls with the Winfrith and CSCM models. 
The prediction of maximum wall strength by the KCC model 
is almost the same as that for the Winfrith model, whereas, 
for the CSCM model, it is 9% higher than for the Winfrith 
model at a 2% drift ratio. Given that confinement is related 
to wall strength, and that tie bar demands are affected by 
confinement pressures, the KCC model was deemed to be 
more adequate for the investigation presented in the main 
body of the paper, in spite of its shortcoming in capturing 
global hysteretic response.

Comparison of Confinement Through Concrete Axial 
Stress Distribution Through Wall Thickness

 Fig. 21a–c shows the axial stress distribution in the steel 
and the concrete obtained from static inelastic pushover 
analyses along half the wall depth under compression, but 
excluding the half-HSS ends of the wall. In this figure, the 
zero position corresponds to the center of the wall and the 
dotted lines in these figures represent the tie bar locations. 
Note that, here, the wall thickness is represented as layers 
equal to the concrete finite element mesh segments through 
the thickness. Layer 1 corresponds to the outermost layer 
and Layer 4 corresponds to the innermost layer at the center 

of the concrete wall. For each model, concrete stresses are 
reported for each layer to observe the variation of confine-
ment through the thickness. The stresses are reported at the 
wall elevation corresponding to half the distance between 
the first and second row of tie bars [= 203 mm (8 in)] from 
the base.

As shown in  Fig. 21a for the wall with the Winfrith 
model, the compression axial stress distribution through the 
layers of the infill concrete does not change significantly. 
Moreover, all the concrete layers exhibit a stress block with a 
peak strength of approximately 60 MPa (8.7 ksi). This gives 
the wall a minor increase in flexural strength considering the 
unconfined strength of 48 MPa (6.9 ksi). This indicates that 
some confinement is provided by the pressures developed in 
the boundary elements. The consequence of web plate buck-
ling is also visible, as expressed by the progressive reduction 
of axial stresses resisted by the steel plate, most significantly 
observed at 3% and 4% drift.

As shown in  Fig. 21b for the wall with the KCC model, 
the compression axial stress distribution varies through the 
thickness with higher values at the innermost layers than at 
the outermost ones—this is attributed to the model’s ability 
to simulate shear dilation and hence capture confinement 
effects. Note that the maximum compressive stresses reached 
at mid-layer is more than double the values measured for 
the wall with the Winfrith model. For example, the peak 
strength is about 150 MPa (21.8 ksi) in Layer 4 (compared 
to 60 MPa (8.7 ksi) in the wall with the Winfrith model). 
For the wall with the KCC model, the compression depth is 
approximately 100 mm (3.94 in) less than for the wall with 
the Winfrith model.

As shown in  Fig. 21c for the wall with the CSCM model, 
the compression axial stress distribution also varies through 
the thickness as a consequence of concrete shear dilation. 
The maximum compressive stress reached at mid-thickness 
of the wall is about 75 MPa (10.9 ksi). Note that, the com-
pression depth is increased by as much as 75 mm (2.95 in) 
compared to the wall with the Winfrith model. For this wall, 
the axial stress distribution of the steel plate indicates sig-
nificant plate buckling.

Fig. 20  Comparison of cyclic 
in-elastic base moment hyster-
esis: a Winfrith and KCC, and; 
b Winfrith and CSCM

(b)(a)
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Comparison of Tie Bars Axial Force Demand

Here, axial force response of tie bars obtained from the static 
inelastic pushover analyses are compared.   Fig. 22a–c shows 
the axial force demands for the four tie bars identified in 
Fig. 1b. As shown in  Fig. 22a, relatively low axial forces 
are obtained when using the Winfrith model compared to 
the ones using the KCC (Fig. 22b) and the CSCM (Fig. 22c) 

models. Larger tie bar forces are created when using the 
KCC and CSCM models, evidently due to the ability of 
these models to account for shear dilation. For example, 
for  Tie22, axial demands obtained at 4% drift are 6 kN (1.4 
kips), 120 kN (27 kips), and 59 kN (13.3 kips) for the walls 
with the Winfrith, KCC and CSCM models, respectively. 
Results indicate that, in this case, tie bars remain elastic for 
all cases.  Assuming a 345 MPa (50 ksi) yield strength of tie 

(a) (b) (c)

Fig. 21  Axial stress distribution in steel and concrete along half wall depth from FE models with concrete models: a Winfrith, b KCC, and; c 
CSCM (vertical dotted lines denote tie locations)

(c)(b)(a)

Fig. 22  Axial force of tie bars of the walls with concrete material models of: a Winfrith; b KCC, and; c CSCM
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bars and a 25.4 mm (1 in) bar diameter, the yield capacity 
of a tie bar is 175 kN (39.3 kips). Note that maximum force 
demand occurs in different tie bars for each model. For the 
wall with the Winfrith and CSCM models, maximum tie bar 
force occurs in  Tie11 (interior tie bar), whereas it occurs in 
 Tie12 (exterior tie bar) for the wall with the KCC material 
model. This is attributed to differences in the width of the 
concrete compressive stress blocks—previously shown in  
Fig. 21—which is closer to interior tie bars (e.g.,  Tie11 and 
 Tie12) for the walls with the Winfrith and CSCM models, 
and closer to exterior tie bars (e.g.,  Tie21 and  Tie22) for the 
wall with the KCC model.

Summary of Findings on Selection 
of Concrete Model

For the work presented study, various aspects of wall behav-
ior were compared to select a concrete model that is able to 
provide an acceptable representation of global wall response 
while at the same time allowing to consider concrete con-
finement and associated tie bars axial force responses. For 
this purpose, inelastic cyclic wall responses obtained using 
the KCC and CSCM models were first compared with the 
previously benchmarked wall response (from prior research) 
using the Winfrith concrete. Then, concrete confinement 
behavior was investigated for the three concrete models by 
plotting and comparing the concrete axial stress distributions 
across the wall depth and concrete thickness. Finally, tie bars 
axial force responses were investigated for the three concrete 
models by plotting and comparing axial forces for a certain 
set of tie bars. On the basis of this work, it was determined, 
as described in Sect. 3.2, that while both the KCC and 
CSCM models could not simulate the pinching experimen-
tally observed in the inelastic hysteretic flexural behavior of 
the walls, results from the wall using KCC model was better 
in agreement with the actual wall response. Likewise, with 
respect to axial stress distribution along the cross-section, 
compression depth obtained with KCC model was found to 
be in better agreement with experimental results. Conse-
quently, of the three models considered, the KCC model was 
retained for the exploratory work presented in this paper.
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